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V. On the figure requisite to maintain the equilibrium of a homo-
geneous fluid mass that revolves upon an axis. By JAMES
Ivory, A. M. F.R. S.

Read December 18, 1824.

THE theory of the figure of the earth, as delivered in the
Philosophie Naturalis Principia Mathematica, is liable to some
objections. In determining the ratio of the axes, the illustri-
ous author assumes that the terrestrial meridian is an ellipse,
having the greatest diameter in the plane of the equator.
M’Laurin afterwards proved, by a most elegant synthetic
process of reasoning, that a homogeneous fluid body, pos-
sessed of such a figure as NEwroN supposed, will fulfil all
the conditions of equilibrium arising from the attraction of
the particles, and a centrifugal force of rotation. In this
manner the assumption of NEwton was verified ; but the
theory was still left imperfect, since it is necessary to deter-
mine, by a direct investigation, all the figures of a fluid mass
that are consistent with the laws of equilibrium, rather than
to show that the same laws will be fulfilled in particular in-
stances. We are indebted to LEGENDRE for the first demon-
stration that a homogeneous fluid body, revolving about an
-axis, cannot be in equilibrio by the attraction of its particles,
unless it have the figure of an oblate elliptical spheroid. The
researches of LEGENDRE were rendered more general by
LarLace, whe gavea complete theory of the figure of the
planets, distinguished by that depth and elegance which is so
much admired in all his writings. It is assumed, however
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86 Mr. IvorY on the figure requisite to maintain the equilibrium

by the eminent geometers we have mentioned, that the figure
of the fluid mass is but little different from a sphere which
is a restriction not essential to the problem, but introduced
for the sake of overcoming some of the difficulties of the in-
vestigation. In the following Paper, the figure of a homo-
geneous fluid body, that revolves about an axis, and is in
equilibrio by the attraction of its particles, is deduced by a
direct analysis in which no arbitrary supposition is admitted.

1. It is necessary to begin this research, with laying down
some gencral properties of the attractions of bodies ; and we
cannot better accomplish this end, than by considering the
function, which is the sum of all the molecules of a body
divided by their respective distances from the attracted point.
Conceive any material body to be divided into an indefinitely
great number of molecules, one of which is represented by
dm ; and having drawn three planes intersecting at right
angles within the body, let x, y, 2, denote the co-ordinates
that determine the position of dm, and a, b, ¢, those that de-
termine the attracted point: then, if we put

r=vVaét+b+e
f=V@=a7F =3y + (c==)"

r will be the distance of the attracted point from the origin of
the co-ordinates, and f that of dm from the attracted point.

Now let V (r) = %?-,

the sign of integration, extending to all the molecules of the
body : and V (r) will be the function alluded to, and which
we have to consider.

It need not be mentioned that V() is not a function of 7,
but of the three co-ordinates a, b, ¢; or it is an abridged
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symbol denoting a function of 7, and the angles which that
line makes with the axes of the co-ordinates.

The distinguishing property of the expression V (r) is
this: if we take its fluxions with respect to the variable

quantities a, b, ¢, the differential coefficients — (d‘(ya(’)),
— (_____.d ‘dVb(') ) — (d‘;/c(r) ), will be respectively equal to the

accumulated attractions of all the molecules of the body on
the attracted point in the directions of a, b, ¢, and tending to
shorten these lines. |

Suppose now another body similar to the first in its lineal
dimensions, and likewise having the parts similarly situated
of the same density. If, therefore, this second body be di-
vided into the same number of similar molecules as the first
body ; every two molecules, dm and d ', situated alike, will
be of equal density, and their volumes will be proportional to
the volumes of the two whole bodies. Suppose, also, that
%, ¥, %, are three rectangular co-ordinates of the molecule
dm', drawn to planes situated in the second body, similarly
to the like planes in the first ; and farther, let &/, ¥, ¢/, be the
co-ordinates of an attracted point, placed in the same relative
situation in the second body, as the former attracted point in
the first; then,

r=va* Fb*4 "
f=V({@d—2 )V (0'—y)+ ((—=')
V()= iJ;,.”.
It is manifest from what has been said, that  and », f and

f', are homologous lines of the two bodies ; and hence,
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consequently,
A, 4m 1 %
R e A
and as this is universally true of all the molecules, we have,
Vi __ V()
r2 T rz *

In this form the expression is inconvenient, because both
the quantities become infinite when we suppose that the at-
tracted point is placed in the origin of the co-ordinates. But
the inconvenience is easily removed by substituting, for r
and 7', any other two homologous lines. Let r and 7/, pro-
duced if necessary, meet the surfaces; and let R and R’ de-
note the parts within the two bodies, intercepted between
the surface and the origin of the co-ordinates: then it is
manifest that E:— = -f-}' ; and we shall therefore have

' V) V()
R? - R'2 .

If, therefore, we suppose a series of such bodies as we
have been describing, which increase in magnitude from
zero to infinity, while they constantly preserve the same pro-
portions in their lineal dimensions, and the same densities of

Vi
R= °

constantly the same value in all the bodies, supposing that

the attracted points are alike placed in them all. It is mani-

V(r)
Rz

‘mon to all the bodies in the series; or it will be a function
of the quantities that remain unchanged in passing from one
of the bodies to another. But as these quantities are not the
same in all positions of the attracted point, it will be proper
to distinguish several cases.

the parts similarly situated ; the quantity will have

fest, therefore, that will depend only on what is com-



of a homogeneous fluid mass that revolves upon an axis. 89

First, let the attracted point be in the surface, in which
b

T E
stantly retain the same values in all the bodies. These
quantities remain unchanged, because the line r, or R, always
makes the same angles with the axes of the co-ordinates.
We therefore have,

V(R) {R ]’ R}

the letter F being the mark of a function. Hence,

2 a b
V(R):‘—-"‘R XF. {i—, —E-,Rc—} .
Again, let us put,

case r=R: then are the only quantities that con-

a=r.w; b=rv1—u*.Cos.w; c=ry1/_1_-——-74_“.Sin.w;
and @ will be the cosine of the angle which the line r, or R,
makes with the axis of a; and = the angle which the pro-
jection of the same line upon the plane of & and ¢ makes
with the axis of b: then, when »=R, we have,

V(R)=R" x F. {‘u.,\/l — . Cos. 'W‘,‘/l — w’. Sin. ‘u} .
Secondly, suppose that the attracted point is placed within
each of the bodies ; then the quantities common to them all

a b ¢
are these, viz. —R— rrir e Hence,
V) __ r a b ¢
e =F {x 5T}
Consequently,
r a b ¢
V(?‘):RZXF. {'ﬁ', ‘;‘) ‘r") T} 3

V(r)=R'xF. {ir«, w, ¥ 1—u?. Cos. =, v'1 — . Sin. —za-} .

In order to have a more exact notion of this function, we may

suppose it to be expanded in a series of the powers of the
. r

fraction = : then,

MDCCCXXIV, N



90 Mr.IvoryY on the figure requisite to maintain the equilibrium
VQ9=Rw{P%+MW§me”’-+&C}

the coefficients P°, P(I), P(Z), &ec. being all functions of g,

V1—=u* Cos.m, V1 — *.Sin. . When the attracted point

coincides with the origin of the co-ordinates, the value of
( )

is equal to P©° ); and when the same point is in the sur-
( )

face, then — == 1, and the value of is equal to

R
ﬂ”+#”+ﬁ”+&a

Finally, let the attracted point be without the surface ; then

the quantities common to all the bodies are these, viz. —1}, =

[ [ l
—, —: hence
roor

Vi) __ R ¢ b ¢

, "_R‘,'_‘——-F.{"’._,’—“, "':",T}a
Consequently,
V() =RexF {2, 5 L L

V(r)::R’xF{ —, w, V'1— w2 Cos. w,‘/l-—,u Sia. ws

In this case, Y, decreases as 7 increases, and finally

RI
vanishes when 7 is infinite. The expansion must therefore

have this form, viz.

V(r):sz{QU)-% 9(2) > Q(S) = -+ &e. }
Q(‘) Q(z) Q(3) &c. being functions of p, V1— @ Cos. w,
v _1——‘-_[; Sin. =. When the attracted point is 1n the surface,

=1, and the value of ( L j is equal to

Q(l)+Q(2)+Q(3)+&Co

The preceding reasoning is quite general, and will 'apply
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to any material body, whatever be its form. The body may
consist of parts not connected by any mathematical law ; or,
which is the same thing, it is not necessary that the equation
of its surface be subject to the law of cohtinuity.

2. The co-ordinates of the molecule dm being z, y, 2, let
R/ denote its distance from the origin of the co-ordinates ;
and put, _
r=R.u; y_RVl—u .Cos.a'; 2 =R'V1= > w. Sin. =';
then, since we likewise have,

a==r.pu; b=r . vV1—p*.Cos.w; c=ry/1—w.Sin.z;
and,

f=Va—a)+ (=) (c—=)%;

we shall get,

¥ :':p,,p,"—l-—‘/l-——(.b’. \/1———-p.,'2.COS. ('w‘—-'za"),
f=vr—arR .y 4+ R".

It now becomes necessary to expand - 7 in a series of the

powers of — w5 OF of 2 ~. Much has already been written on

this expansion. The coeflicients have been exhibited in, va-
rious forms, and many remarkable properties which they
possess have been very diligently explored. It would not,
therefore, be necessary to add any thing upon this subject,
unless it be possible to give to the same quantities a new
and more simple form of expression, useful in the present
investigation.
If we suppose,

P R COL R 0L R O R g,

the following differential equation has already been proved
in the Philosophical Transactions for 1812, viz.
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| Cac®
, . d‘{(l-—v“)gc—i }
(i 41).CY 4 LA SEp

dey
and from th‘is equation the value of C® is deduced, viz.
C(i)= 1.3.5...2i—1 x {‘)/i—— z'(i—.-l) ) 'yi—z +.&C.} )

1.2.3 « o0 12 z2.21—1

In the same place another more general differential equa-~
tion is found, of which the former is only a particular case,
viz.

* {h—w”* ant C(D}

d c() | dy"t!
((+nt1). (1—o )" —+ e
For the sake of abridging I shall now put
n(z)
@(n)=(l 7),, ﬁﬁ__ :

and, consequently,
¢(0) - (1— 9 )° & Cf:) =
_ e

then, if in the foregoing formula, we make 7 successively
equal to o, 1, 2, 8 . . . 7, we shall get this series of equations,

viz.
(o) (’)
+ : (z + 1.dy = =0

KO a0
+ t—1.042.dy " o

(2) d.¢(3) .
¢t =0

; @)
(i-1) d.p
o =0

crmncrmrmt 0.
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Now, by combining these equations, after having taken the
fluxions of each a proper number of times, all the intermediate

quantities between ¢ and <p(i) may be made to disappear;
and we shall finally obtain,

i i (i)
() i -1 %

1. c3...2% d-‘yi

¢

=0:

and by restoring the expressions that‘ ¢(0) and cp(i) stand for,

. d." (1— ’ Lci(.z.)}
C(i)__. (—1) i .

— .X
1.2.3... d‘y

But, from the series equal to C( ), we get
at c®

=1.8.5...(27—1).
- (2i—1)

‘Wherefore,

CO (=0 da—)
2.4.6...21% dyt

From this very simple expression, the mest remarkable pro-

perties of the coefficients of the expansion of - > are very
readily deduced.
3. We may suppose that the indefinitely small molecule

dm is a parallelopiped, of which the height is equal to dR’;

and the length to \/Iiﬁi, ., the small line described by the

motion of R’ perpendicular to the plane of y, z; and the

breadth to R'd=' v/ 1 — @', the small line described by the

motion of R’ parallel to the same plane. The volume of the

molecule is therefore equal to d R’ x \/R f’f._ x R'da'v/1—p’;

and, if ¢ be put for its density, we shall have
dm =eR’”dR’dy,'(1w'.
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Again, we have,

f=V7 2 rR ¢y F R7,
V(?’)“"j dim .

and, by taking the fluxions with regard to r,

d.V@))\ .. __ fdm(@*—rR'y)
[ o i,
But, .
r*—1r R y=f>4rR’ ¢y —R"”;
wherefore,

. (d.;’r(r)) +/dm<rR'~/—R“>’

‘and, by adding the equlvalent quantities, 2 V (7) and ¢ f ij’i,

we get

QV(T)——(d V (r) ) /‘ fdm(rRy—R”),

and by substituting the value of dm,

V) - L7 r= [ [dw ' So R R”(M;R)IIR’

or, whlch is the same thing,

() e f

In the present paper, we confine our attention to a homo-
geneous body, or fluid mass ; and, e being constant, we may

suppose it equal to unit; then, having integrated the last
equation with regard to the variable R’, we shall get,

( V(T) ) \/"/i{ISd‘U‘I do'

In this formula, R’ is the line drawn from the origin of the
co-ordinates to the surface ; and the integration with respect
to p, is to extend from w'=1 to p'= —1; and that with

§
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respect to @', from @’ = 0 to @’ == 2 =, or the whole circum-
ference. | |

The preceding formula is true, whether the attracted point
be without or within the body. There is however a distinc-

tion between the two cases. If we multiply by -—-‘éaf, and
then integrate, we shall get

V(r) .[ drjf RUdu do'
. . Vrr=2rRy 4 R3’

no constant quantity being necessary when the attracted
point is without the body, because both the quantities vanish
when 7 is infinitely great. But when the attracted point is

within the body, it is necessary to add a constant quantity,

d.V(r)
dr*

therefore, we have

V() __j drﬂ‘ R73dp d o'
T 73 Vir L ZrR g + R"‘+ K

—? dr RB3dp d=’ s
V(r)‘—-rf——ﬁg[]’\/r"-—er’fy—l-R’z+Kr’

K being a quantity independent of .
It is necessary to find an expression of the value of K. For
this purpose we have

v =[5 =/
Expand the denomlnator in a series of the ascending powers
of r; thven,v
V(r)=[[[RdRdp d=
-+ rf[de’. c dw dw'
#r [ cOavas

+ 15 [ O dy o
-+ &c.

d . e
because , 1s not evanescent when r==o0: in this case,

and
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The integrations with respect to d R’ should be executed from
R’ == o, to the value of R’ at the surface of the body ; which
cannot be done, because all the terms after the two first
would be infinite. Conceive a sphere to be described about
the origin of the co-ordinates with the radius r; then the
whole value of the function V (7) will be equal to its value
with respect to the sphere added to its value with respect to
the matter between the sphere and the surface of the body.
The attracted point being in the surface of the sphere, the

first part of the value of V (7) will be equal to —%”— x7*; and
the second part will be found by integrating the foregoing

expression, so that all the integrals shall vanish when R'=7.
Thus we‘get

V(r)=4r4+ [[{(R*—r)dwds
+r:,ff(R'__r).C( dy dw'
+ 7 [f(Log. R —Log.r). CPdp dw
+ "’[f(____—) CPdu do'
//‘ _'T ‘ C(“)dp,’dza'

. ,+,8.cc, .
Now the integral — & //7* d y' d o', taken between the limits
=1, p=—1 ;A and w'=o0,%' =27 ; is equal to —~2 77
All the other parts of the above expression that contain 7, are
evanescent ; because we have generally,
JICO 4y do' = o.
In order to prove this, it is to be observed that p, ' and ¢
are the cosines of the three sides of a spherical triangle, and
= — ' is the angle opposite to the side whose cosine is ¢ :



of a homogeneous flurd mass that revolves wpon an axis. 97

now if we put « for the angle opposite to the side whose
cosine is w', we may write d p d+ in place of dy' d=’, making
5 and ¥ vary between the same limits as ¢ and w'. This is
allowable ; not that we must conceive the two fluxions as
continually equal to one another, but because the total sum,
between the prescribed limits, is, in either case, equal to the
whole surface of the sphere.” If now we substitute the value

of C¥ given in § ¢, the fdregoing expression will become,

M(;—n) ﬂd <:-—«,> xdyxdy:

and the integral is;

= AT (1)
24.6 ixgwx a‘lvi'-:—x_—’

a quantity ‘which, Abeing divisible by 197, is evanescent at
both the limits of .

Omitting what has been proved to be evanescent in V (7),
and collecting into one sum all the parts multiplied by 7%, and
separating them from the rest, we get

V(r) =ff-—i—li dp.'».dw'+r“x — +Jf10g R'xC( )d,.o dw }
+r[[RCVay dw
fj’ C(S)dp. ' dey
r:[fc(")dp.‘du’

— &cC.
which expression may be thus written in finite terms, viz.

V(r)=rf~—-'lrf Rﬂdy,'dm Iy {_3_31_*_ flog.R'xC(z) dp,'dm'}

as will be evident by expanding -}-, and performing the in-

MDCCCXXIV. 0]
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tegrations with respect to dr. By comparing this expression
of V(r) with the foregoing one, we get,

K=—2"4 [flog. R xC?dp d .

From this expression it follows that K has the same value
in all similar homogeneous bodies. Suppose another body,
similar and homogeneous to the first, and having the axes of
the co-ordinates similarly placed: let R’ and R’, be lines
drawn to the surface from the origin of the co-ordinates, and
making the same angles with the axes; then, K’ denoting
the like quantity in the second body as K in the first, we
“have

.__ﬂ+ flog.R'xC(z)dp.'dw",
K'=—24 [[log.R, x CPdp' da';

wherefore,

K— K':::j[log. %:— xC(z)dpfdw'.
But the two bodies being similar, and R’ and R’, lines simi-

larly drawn in them, it follows that < " will remain un-

changed, when ' and =’ vary. Consequently,
K— K'=log. g7 x [ [CPdu' du' =0.

4. Having now laid down the properties of attraction to
which we shall have occasion to refer, we are next to con-
sider the conditions necessary to the equilibrium of a fluid
mass. These were first reduced to a uniform mode of calcu-
lation by CrairavuT, in his Theory of the Figure of the earth.
They are investigated in all the great treatises of rational
mechanics ; in the Mecanique Analytique of LAGRANGE, the
Mecanique Celeste of LapLack, and the Mecanique of Poisson.



of a homogeneous fluid mass that revolves upon an axis. 99

The English reader will likewise find the same investigations
in a work published in 1821, under the title of Elementary
Hlustrations of the Celestial Mechanics, which is a translation
of the first book of the Mecanique Celeste, and, in addition to
the text, contains much valuable matter. Referring to these
works, we shall first merely enumerate the chief properties
of the equilibrium of a fluid mass, for the sake of recalling
them to the recollection of the reader ; and then make such
an application of the general principles as our present purpose
requires.

A heterogeneous fluid body cannot be in equilibrio, unless
the outer surface be every where of the same density ; and
farther, unless particles of the same density be arranged in
distinct strata in the interior of the mass. The pressure upon
all equal spaces of every stratum of uniform density, that is,
the force acting perpendicularly to them, and pushing them
inward, must be equal. Hence, these are called level strata,
or couches de niveau, because the direction of the accelerating
force, or of gravity, is every where perpendicular to them.
It is easy to perceive that the densities must decrease in ap-
proaching the outer surface. For, in two contiguous strata
of different densities, if we take two molecules equal in vo-
lume, and placed at the same point of the separating surface ;
the common gravity acting upon both will produce a greater
pressure in the denser molecule. Wherefore, if the denser
matter were nearer the outer surface, it would penetrate into
the rarer matter below it; which is contrary to the perfect
separation of the strata of different densities.

Supposing all these conditions to be fulfilled, it readily
follows that the fluid body will be in equilibrio. For the
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equal pressure upon every part of the upper surface of a level
stratum, being propagated through the interior fluid, will
act with equal force in an opposite dlrectlon upon every part
of the lower surface; and hence, every molecule of the
stratum will be equally pressed in all opp031te directions.

‘When the fluid mass is homogeneous the distinction of the
level strata arising from the difference of their densmes is
lost ; but the p0831b111ty of d1v1dmg it into any number of

strata separated by level surfaces, is still a necessary con-
dition of the equilibrium. '

The condition, that'every level surface must be a continu-
ous curve stretching through the whole fluid mass, imposes
a limitation on the forces with which the equilibrium is pos-
S1ble.4v All these curve surfaces are defined by a common
equation between three independent co-ordinates ; and as
this equation is to be found by ixltegrating an expression con-
taining the co-ordinates and their fluxions, the operation
must be practicable, without supposing :any relation between
the three variable quantities. Hence, the forces acting on
the particles of the fluid must be such, that the three diffe-
rential coefficients shall fulfil what is called the criterion of
integrahility; otherwise the equilibrium will be impossible.
In determining the equilibrium of the fluid placed on the sur-
faces of the planets, the nature of the forces brought into
action is such, that the problem is always free from contras«
dictory condltlons

To come now to the main object we ‘have in view,* con-
Lelve that HK I is a body of homogeneous fluid in equilibrio

* Theone de 1a Figure de la Terre par CLairauT. Premiere Partie, cap. V.
§ XXI.
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by the action of all thé forces that urge its particles. Let
z, 9, %, be three rectangular co-ordinates of a point K in the
surface ; and put X, Y, Z, for thie accelerating forces that act
upon a particle at K respectively in the directions of the co~
ordinates, and tending to diminish these lines. Suppose that
K varies its position a little in the fluid’s surface; then the
condition that the resultant of the forces parallel to the co-
ordinates, shall be perpendlcular to that surface, is expressed
by this equation, viz.
Xde+Ydy+Zdz=o.

In order that the equilibrium be possible, the expression
just set down must be a complete differential ; which subjects
the forces X,Y,Z, to the criterion of integrability. - This
condition being fulfilled, the equation of the fluid’s surface
will be, .
SJ(Xdzx4Ydy+ Zdz)=C,
C being an arbitrary constant quantity. If, for the sake of
brevity, we represent the preceding mtegral by ¢, we shall
have,

o=C
d de do
X——'J Y—dJ 1= dz ’
Again, let
P=vV X'+ Y 1L

then p is the resultant of the forces X, Y, Z; and it acts on
a particle placed at K, in" a direction perpendicular to ‘the
fluid’s surface, and tending inward. Itis the gravity at that
point.
Suppose now that a stratum of fluid is laid upon the sur-
-face HK I, the thickness at K being equal to the mdeﬁmtely
small line KS. The new pressure at K will be proportional
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to the superincumbent matter multiplied by p, or by the gra-
vity which urges a particle inward. But, as the density is
constant, the quantity of matter pressing at K, will be pro-
portional to the thickness K'S. Wherefore, if § C represent
the additional pressure at K, we shall have

oC =p x KS.
Hence, \
C
KS—'— VX F Yt 2°

If now we suppose that ¢ C remains constant, and, by means
of the formula just set down, determine the thickness at
every point ; it is evident that the stratum will press equably
upon the surface of the fluid HKI, and consequently will
not disturb the equilibrium by its pressure. It remains to
determine the equation of the upper surface of the stratum.
For this purpose we have,

_ 7 - [xX y Z
3C=pxKS=L xKS= (X7 4+Y; +27)xks
The co-ordinates of the point K being z, y, 2, let those of

the point s be x 4-dx, y +3y,2z 4 dz: then KS being per-
pendicular to the surface HK 1, it is easy to prove that,

X X
3$=7WXKS——?XKS,
é‘y:%xKS

— .
dx== > x KS;

wherefore, by substitution, we get

IC=Xdao+Ydy+Z3xz;
that is,

A‘C=————3w+ de S T A ol va 49 5e.
Consequently,

o+ 223z 422 23y 4 4% 3z=C43C.



of a homogeneous fluid mass that revolves upon an axis. 103

Now this expression is derived from the equation,
¢ =C,

on the one hand, by changing C into C 4 4C; and, on the
other, by substituting, in the function ¢, the co-ordinates
z+ dx, y 43y, x4 3z of the upper surface of the stratum,
in place of @, y, %, the co-ordinates of the surface H K L.
Thus it appears, that the equation of the new fluid body is
derived from that of the first one, merely by varying the
constant introduced in the integration.

Before proceeding farther, it is requisite to distinguish
carefully two separate cases. The first is, when the particles
of the fluid do not attract one another ; and the second, when
they are endowed with attractive powers. These are plainly
two cases essentially different from one another : for, in the
first, a stratum added induces no other change than an in-
crease of pressure; but, in the second, besides the pressure
a new force is introduced, arising from the attraction which
the matter of the stratum exerts upon the fluid body to
which it is added.

In the first case, when there are no new forces introduced
by attraction, it is manifest from what has been said, that
the fluid body of which the equation is,

p=CJ-3C

is in equilibrio ; because the stratum presses equally upon all
parts of the surface H KI. If we suppose a second stratum
to be laid upon the first, and compute its thickness by the
gravity at the surface N OL, in the same manner that the
thickness of the first was determined by means of the gravity
at the surface HK1I, we shall have another fluid body in
equilibrio, of which the equation will be,
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p=C34-3CJ-&C
&’ C being equal to the pressure caused by the new stratum.
And, in like manner, any number of strata may he added
eomposing a fluid body in equilibrio.

But as strata have been added without disturbing the equi-
libtium, in like manner any number of strata below the sur-
face HKI, may be successively taken away, so as to leave
the remaining fluid in equilibrio. The original body HK1
may be thus exhausted, or reduced to an infinitesimal quan-
tity that may be ‘neglected ; and then the whole mass, both
above and below the surface H K I, will consist of level strata
separated by surfaces having a common equation, in which
the constant quantity introduced in the integration alone varies
in passing from one surface to another. We may therefore
conclude that, when the particles of the fluid do not attract
one another, the only conditions necessary for the equilibrium
are, first, that the force resulting from X,Y, Z, be directed
into the interior of the mass; and, secondly, that X d » 4
Y dy 4 Z d % be an exact differential.

But this first case can have no application in the theory of
the figure of the planets, the leading principle of which is,
that every particle of matter attracts every other particle.
We must therefore proceed to consider what new conditions
are required in the second case, when the particles are pos-
sessed of attractive powers.

All the forces, whether attractive or not, that urge the
particles of the fluid body H K1, are supposed to be included
in the expressions X,Y,Z ; and it has been shownthat the
gravity arising from- these forces produces, by its action upon
the stratum of which the thicknessis K S, equal pressures
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upon every point of the surface HKI. The whole mass of
fluid, N O L, will therefore be in equilibrio, if it be urged by
no other, forces. But the attraction of the stratum upon all
the matter within it, is a new force brought into play, the
efforts of which must be balanced, otherwise the equilibrium
could not subsist. Now this new force is distinct from the
pressure caused by the gravity, and can never be included in
it. Two separate principles must therefore be employed to
ensure the equilibrium of the fluid body HKI, when acted
upon by the two independent forces. - But a fluid body can-
not be in equilibrio by the action of external forces upon it,
except in one of these two ways: either there must be an
equable pressure upon the outer surface; or, all the forces
that act upon every separate particle must destroy one ano-
ther. 'We are therefore necessarily led to suppose, that the
added stratum must possess such a figure as to attract every
particle in the inside with equal force in all opposite direc-
tions. By the help of this principle, and by no other means,
the fluid body HKI, will still continue to be in equilibrio
when subjected to the additional pressure, and to the new
attractive force.

When more strata are added, they must separately possess
the property of attracting every particle in the inside with
equal force in opposite directions; by which supposition, we
are brought at every step to the same circumstances, as in
the case when there is no attraction between the particles.
The whole fluid mass being ultimately divided into level
strata, the property common to each must belong to the
aggregate of any number of them, «

On the whole, it is not sufficient for the equlhbrlum of a
MDCCCXXIV. P
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‘homogeneous fluid body, the particles of which attract one
another, that the resultant of the forces X, Y, Z, be directed
inward, and that X dx 4 Ydy + Z d % be an exact differen-
tial: to these conditions it is necessary to add that, every
particle placed within a stratum bounded by two level sur-
faces, be in equilibrio by the attraction of the stratum.

The conclusion we have arrived at does not coincide with
the usual determination of the equilibrium of a fluid mass, in
which no distinction is made between the two cases when the
particles attract one another, and when they possess no such
powers. The difference arises from this, that no notice is
commonly taken of the attraction which the thin level stra-
tum exerts upon the fluid body to which it is added. Every
difficulty respecting this point will be removed, if it be im-
pressed on the mind that the gravity at any level surface,
and ‘the pressure caused by it, are forces distinct from, and
independent of, the attraction of the exterior matter. In
estimating the pressure, the exterior fluid is unavoidably re-
garded merely as inert matter subjected to external force ;
and when there are active powers inherent in it, the effect of
these must be separately investigated. It is said that nothing
more is requisite to the equilibrium of a homogeneous fluid,
than that the pressure be equable over all the outer surface,
For, it is argued, since there is no distinction of density in
the interior, it is always possible to trace curves that shall
cut at right angles the resultants of all the forces urging the
particles ; which curves will therefore be level surfaces. But
the defectiveness of this reasoning will appear if it be
observed that, as every particle of the fluid is attracted by
the whole mass, the curve surfaces traced in the manner
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described, will be entirely dependent upon the outer surface.
If the uppermost stratum, or any number of the uppermost
strata be taken away, a part of the attractive force acting
upon every particle will be destroyed, and the curve surfaces
will no longer be perpendicular to the resultants of the re-
maining forces urging the particles. Suppose that the strata
are taken away successively ; then, the figure necessary to
the equilibrium of the remaining fluid will change as each
stratum is abstracted ; which is contrary to the just principles
of the equilibrium of a fluid mass. The level surfaces of a
homogeneous fluid mass in equilibrio, are determined with-
out ambiguity by varying the arbitrary constant of the gene-
ral equation. And as there is no doubt that the figure of the
outer surface has no relation to any matter placed without
it ; so any level surface, which is defined by a perfectly simi-
lar equation, must be independent of all the exterior matter.
Farther, the gravitation acting at any point of the outer sur-
face is a function of the co-ordinates of that point, and has
no dependence upon any exterior matter ; and, the like force
at any level surface being the same function of the co-ordi-
nates of that surface, it must be equally independent of the
exterior matter. And although it be admitted that every
level surface must be perpendicular to the resultant of all
the forces urging the particles, yet it does not follow that no
modification of the forces is necessary to the equilibrium. In
reality, the foregoing observations prove that, if we reason
consistently from what is allowed in the usual determination
of the equilibrium of a fluid mass, we shall be led to the
same conclusion at which we have already arrived ; namely,
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that the forces acting at any point in the interior, must be so
modified by the figure of the fluid, as to render every level
surface, and the gravity at every point of it, independent of
the exterior matter.
- We may cite as examples of the two different cases of the
equilibrium of a homogeneous fluid, the hypothesis of Huy-
GHENSs respecting the figure of the earth, which falls under
the first case ; and the Newtonian theory on the same subject,
which belongs to the second. HuyGHEN’s supposed an attrac-
tive force residing in the earth’s centre, and acting with the
same intensity at all distances. Therefore, in the case of a
revolving mass, every particle is urged by a constant force
directed to the centre, and by a centrifugal force proportional
to the distance from the axis of rotation. As there is no
attraction between particle and particle, a level stratum will
act by pressure only upon the fluid below it; and the only
condition requisite to the equilibrium, is an equable pressure
over all the outer surface. But, according to NEwToN, every
particle attracts every other particle; and a level stratum
“will act upon the fluid below it, both by the pressure of gra-
vitation and by its own attractive force. In this theory,
therefore, the adjustment of the equilibrium requires the joint
application of both the principles of the second case.

The method of investigation followed in what goes before,
is similar to a process of reasoning in CLAIRAUT’s theory of
the figure of the earth; and it is certainly surprising that
the difference of the two cases was not remarked by that
acute geometer. Other authors have very generally adopted
~a more simple procedure introduced by Evrer. It will be
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worth while to set before the reader very briefly the steps
of EuLER’s investigation, for the purpose of pointing out the
omission with which it is chargeable.

Suppose that the fluid mass in equilibrio is divided into in-
definitely small rectangular parallelopipeds by planes parallel
to those of the co-ordinates ; and let x, y, %, be the co-ordi-
nates of one angle of a parallelopiped which has d, dy, dz,
for its sides, and which we may conceive to be so placed,
that # - d@, y 4 dy, = + d=z, are the co-ordinates of the
opposite angle. The forces that act upon the parallelopiped
are ; the pressure of the adjacent fluid upon its six faces;
and the accelerating forces X, Y, Z, urging-every particle in
directions parallel to @, y, 2z, and tending to increase these
lines. The pressure at any point of the fluid must depend
upon the situation of that point, or it must be some function
¢ of the co-ordinates x, y, #: and, according to the principles
of the differential calculus, ¢ will retain the same value over
all the three faces of the parallelopiped that comprehend any
one of the solid angles. Now, y and % remaining constant,
if we substitute # 4 d x in place of z, ¢ will be changed into

) +%§ . dx; and the two quantities ¢ and ¢ -~ Z—g dz, will

represent the intensities of pressure upon the opposite rec-
tangles comprehended by dy and dz: the forces compres-

sing the' parallelopiped are therefore ¢ x dy dz, and (¢ 4 %—de)

dyd=z; and the difference, or g-g dxzdydz is the force causing

the parallelopiped to move in a direction tending to diminish
2. In like manner, the pressures on the other sides produce

the forces % dx dydz and :—11% dxdydz, causing the parallelo-
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piped to move in directions tending to diminish y and =.
Again, the accelerating forces X,Y, Z, acting on every paral-
lelopiped produce the motive forces Xdadydz, Ydzdydz,
Zdxdydz, tending to increase the lines «,y,%z. But the
equilibrium of the parallelopiped requires the equality of the
opposite forces : wherefore,

22 =X, 2=Y,22=7.

TR =L

dx

Hence, we get,

do=Xdo 4+ Ydy+ Zd=z.
Wherefore if we trace a stratum of the fluid so that ¢ shall
every where have the same value, the figure of the stratum
will be defined by the equation

Xdaoe +Ydp+Zdz=o0;
which likewise shows that the resultant of the accelerating
forces is perpendicular to the stratum.

In what has been said, the equilibrium of every parallelo-
piped is established with respect to all the outward forces
extrinsic to its own matter. If the question relate to no other
forces, the whole fluid mass, and all the level strata of which
it consists, will be in equilibrio, and the problem is solved.
But when the particles of the fluid attract one another, there
are forces not yet takeninto account, inherent in every paral-
lelopiped, by means of which it will act upon all the exterior
matter, and the efforts of which must be balanced, other-
wise the equilibrium could not subsist. Now, if we suppose,
as before, that all the level strata are possessed of such a
figure as to act upon particles in the inside with equal forces
in opposite directions, it is evident, that every parallelopiped
will be in equilibrio by its action upon all the matter on the
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outside of the stratum. With regard. to the matter in the
inside, a parallelopiped will act upon it effectively ; but, the
united attraction of all the parallelopipeds in the same stra-
tum upon every interior particle being equal in opposite
directions, it will not disturb the equilibrium of the fluid be-
low the stratum. Therefore, when we take into account all
the forces that act upon the parallelopipeds; both those
urging them externally, and those inherent in their own
matter ; it is evident, that all the molecules in the same level
stratum will be in equilibrio with respect to the matter above
them, and that they will press equably upon the fluid body
below them, by the action of the gravity alone. The fluid
mass will therefore be in equilibrio with respect to all the
forces in action. Thus, in every view of the problem, it ap-
pears that, when nothing essential is omitted, the particular
"conformation of the level strata which annihilates their action
upon particles in the inside, is just as necessary to the equili-
brium of the fluid mass, as the equality between the pressure
and the effect of the accelerating forces.

There is another way of arriving at the same conclusion,
which, in reality, first led to the suspicion of some defect
lurking in the usual determination of the equilibrium of a fluid
mass. This new view of the subject, which applies only to
the law of attraction that takes place in nature, is contained
in the two following propositions.

ProrosiTiON 1.

If a homogeneous fluid body revolving about an axis, be
in equilibrio by the attraction of its particles in the inverse
proportion of the square of the distance ; any other mass of
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the same fluid having a similar figure, and revolving with
the same rotatory velocity about an axis similarly placed,
will likewise be in equilibrio, supposing that its particles
attract one another by the same law.

Suppose that a homogeneous fluid body revolves about the
axis AB, and is in equilibrio by the attraction of its particles
and the centrifugal force ; and let another mass of the same
fluid, similar in its figure to the first body, revolve, in the
same time, about the axis ab, similarly situated to AB: this
latter body will also be in equilibrio.

Conceive that the body in equilibrio is divided into an in-
definitely great number of thin level strata; and let the
other body be divided into the same number of strata by sur-
faces similar, and similarly situated to the level surfaces of
the first body. Take any point H in a level surface of the,
body in equilibrio ; and in the corresponding surface of the
other body, let the point % be similarly situated to H. Far-
ther, suppose the two bodies are similarly divided into the
same indefinitely great number of molecules, of which dm
and dm' are any two situated alike, and therefore having
their volumes and quantities of matter proportional to the
volumes and quantities of matter of the two whole bodies :
and let f and f’ denote the respective distances of the points
H and % from dm and dm’, and r and #’, their respective dis-
tances from the axes AB and ab.

The forces with which the molecules dm and dm’ attract
the points H and % (which must be considered as two equal

particles of matter ) are proportional to —df'f— and%p—’,”;' : and, in
these fractions, the numerators being proportional to the
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cubes, and the denominators to the squares, of any two ho-
mologous lines of the respective bodies, the attractive forces
will be simply proportional to any two such lines. The lines
f and f, in the directions of which the forces act, are likewise
similarly inclined to the surfaces passing through the two
points H and A. It follows, therefore, that the forces with
which the similar molecules into which the two bodies are
divided, attract the points H and k, are constantly in, the
same proportion to one another, and act in directions that
make like angles with the surfaces passing through the same
points. Farther, since the velocity of rotation is the same
in the two bodies, the centrifugal forces urging the points H
and & will be proportional to the respective distances from
the axes A B and ab; that is, to 7 and 7/, or to any homolo-
gous lines of the respective bodies; and the same forces,
having their directions in the prolongations of » and 7/, make
like angles with the surfaces passing thrdugh H and A.
Wherefore all the accelerating forces urging the points H
and h, are respectively in the same proportion to one another,
and have like inclinations to the surfaces passing through the
same points. Consequently, the resultants of the same forces
will follow the like proportion, namely, that of any homolo-
gous lines; and they will likewise be similarly inclined to
the two surfaces. But the resultant of the accelerating forces
acting at H, is perpendicular to the level surface passing
through that point; wherefore, the resultant of the accele-
rating forces acting at A, is likewise perpendicular to the
surface in which that point is placed, and has to the other
resultant the same proportion of any two homologous lines
of the respective bodies. And thus, as in the body in equi-~
librio, the gravity, or the resultant of the accelerating forces
MDCCCXXIV. Q
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is every where perpendicular to the level surfaces ; so in the
other body, the like force is every where perpendicular to the
surfaces similarly situated.

Take K and £ any other two points similarly situated in
the same surfaces that contain H and & : and suppose that
HM, KN, are the thicknesses of the level stratum, in the
upper surface of which H and K are placed ; and, in like
manner, let hm, kn, be the thicknesses of the like stratum in
the other body. Farther, put G, G’ for the resultants of
the accelerating forces, or the gravitations, at H and K ; and
g, g' for the like forces at h, k. Because H and & are points
similarly situated, the forces G, g are proportional to any
homologous lines of the respective bodies. The same thing
is true of the forces G’, g’. Wherefore,

G:G::.g:g"
But the line HM is homologous to hm, and KN, to kn:

wherefore,
HM:KN:: hm: kn.
Consequently,

GxHM: G xKN::gxhm:g' xkm.
But the proportion of G x HM to G’ x KN is equal to that
of the pressures of the stratum upon the fluid below it at the
points H and K : for the quantities of miatter in the stratum
are proportional to the thicknesses HM and KN ; and the
pressures are proportional to the gravitations multiplied by
the quantities of matter. In like manner g x hm and g’ x k#,
are proportional to the pressures of the stratum upon the
fluid below it at the points 4 and k. Wherefore the pressures
at H and K are proportional to the pressures at 2 and k. And,
in general, taking any points similarly placed in the two
corresponding surfaces, the pressures of the stratum upon the
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fluid below it in one body are in the same proportion to one
another, as the pressures of the stratum upon the fluid below
it in the other body. Butin the body in equilibrio, the pres-
sures at all points are equal ; wherefore, in the other body, a
stratum likewise presses equably upon the fluid below it.
And what is true of each individual stratum, must be true
of the accumulated pressure of any number of superincum-
bent strata.

Thus, in the two bodies, every thing is similar. The forces
which urge the particles of one, are, in the case of the other,
all increased, or all diminished, in the same proportion, while
they act in like directions. 1If, in the one, the gravity be
every where perpendicular to the level surfaces; the like
force is perpendicular to the surfaces similarly traced in the
other : and if, in the first, all the level strata press equably
upon the fluid below them ; the same thing is true of the
strata into which the second is divided. Wherefore, the
equilibrium of one body is a necessary consequence of the
equilibrium of the other.

Provrosition II.

If a homogeneous fluid mass revolve about an axis, and be
in equilibrio by the attraction of its particles in the inverse
proportion of the square of the distance ; all the level surfaces
will be similar to the outer one : and any stratum of the fluid
contained between two level surfaces will attract particles in
the inside with equal force in opposite directions.

Suppose that the homogeneous fluid body R S T, revolving
about the axis A B, is in equilibrio by the centrifugal force,
and the attraction of its particles in the inverse proportion of
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the square of the distance. The axis of rotation A B, will
pass through G, the centre of gravity of the fluid mass. In
the interior of the revolving body, trace, round the point G,
any surface HIK, similar and similarly situated to the outer
surface. Then the whole fluid body R ST, and the part of
it bounded by the surface HIK, are similar to one another
in their figure; and they revolve about the common axis
A B, which cuts them both similarly : wherefore, because
the first body is in equilibrio, the latter body will also be in
equilibrio, supposing that it revolves by itself, the exterior
matter being taken away, or annihilated.*

And, because the body HIK is in equilibrio, when it re-
volves by itself, the resultant of the forces acting at its sur-
face (namely, the attraction of its own particles and the
centrifugal force) will, at every point, be perpendicular to
that surface. ‘

Suppose now that all the fluid exterior to the surface HIK
is divided into very thin strata by the surfaces OPQ, LMN,
similar and similarly situated to the outer surface RST.
Then, understanding by the gravitation at any of the sur-
faces OPQ, LMN, &c. the resultant of the centrifugal
force and the attraction of the fluid matter within that surface,
it has been proved that these gravitations are perpendicular
to the respective surfaces. Wherefore the uppermost stratum
will be pressed perpendicularly upon the surface OP Q by
the gravitation at that surface. For the same reason the
next stratum will be pressed perpendicularly upon the sur-
face LMN. And, in like manner, the successive strata will
be pressed perpendicularly, each upon the surface on which

* Proposition I,
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it lies, by the respective gravitations. If we conceive a curve
line GHLOR, extending from the common centre G so as
to cut all the similar surfaces at right angles; that curve
line will mark the directions both of the gravitation and the
pressure of the fluid in the interior of the body RST. Where-
fore the several surfaces OP Q, LMN, &c. are no other than
the level surfaces of the body RST in equilibrio ; and each
of these surfaces will be pressed by the superincumbent fluid
with the same intensity over its whole extent. = =

But at the same time that the uppermost stratum presses
upon the fluid below it, by the gravitation at the surface OPQ,
it likewise attracts every particle of matter within the same
surface. And, in like manner, every successive stratum both
presses on the surface on which it lies by the gravitation at
that surface, and attracts all the particles within it. Where-
fore the body HIK is not only pressed by the superincum-
bent fluid, but every particle of it, is likewise attracted by all
the exterior matter. These forces are independent on one
another. Although the body HIK be in equilibrio with re-
spect to the pressure it sustains, it does not follow that it will
likewise be in equilibrio with respect to the attraction which
the exterior matter exerts upon it. In order that this latter
equilibrium take place, it is necessary that every stratum of
the exterior matter be possessed of such a figure as to attract
all particles in the inside with equal force in opposite direc-
tions.

We have now proved that, if the fluid mass RST be in
equilibrio, the interior body HIK will likewise be in equi-
librio when it revolves by itself, the exterior matter being
taken away, or annihilated ; which cannot be the case, unless
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the same body HIK be in equilibrio with respect to the pres-
sure and attraction which the exterior matter exerts upon it.
It has likewise been proved that all the surfaces OPQ, LMN,
&ec. similar to the outer surface RST, are level surfaces ;
and this ensures the equilibrium of the interior body HIK
with respect to the pressure it sustains. Its equilibrium with
respect to the attraction of the exterior matter, requires far-
ther, that all the strata between the surfaces RST, OP Q,
L MN, &c. attract every particle within them equally in
opposite directions. We are therefore to conclude that the
homogeneous fluid body RS'T, which revolves about the
axis A B, and the particles of which attract one another in
the inverse proportion of the square of the distance, cannot
be in equilibrio, unless both these conditions be fulfilled ; 1st.
The level surfaces must be all similar to one another; odly.
Every stratum contained between two level surfaces must
attract particles in the inside with equal force in opposite di-
rections.

In the Proposition that has just been proved, the similarity
of the level surfaces is an accidental property connected with
the supposed law of attraction. In the general hypothesis of
an attractive power between the particles, the conditions of
equilibrium are no more than these: 1st. The resultant of
the accelerating forces acting at every point of the outer sur-
face must be directed at right angles towards that surface :
edly. All the level strata must possess such a figure as to
attract particles in the inside with equal force in opposite di-
rections. It may not be altogether superfluous to prove, by
a synthetic demonstration, that these conditions are sufficient
for the equilibrium. This is done in the following Proposition.
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Prorosition III.

If a homogeneous fluid mass fulfil the two above-men-
tioned conditions, it is in equilibrio.
Let the equation of the outer surface of the fluid mass, be
o=0C;
¢ representing a function of three rectangular co-ordinates,
x,y,%. 'Then the accelerating forces parallel to the axes of

x,y,%, will be respectively equal to 3—%, %, %—i’; ; and the con-
dition that the resultant of these forces is perpendicular to
the surface of the fluid will be expressed by the differential
equation,

%dw+%dy + %%dz:o.

We shall suppose that the whole fluid mass is divided into
thin strata by level surfaces, which are determined by making
the constant quantity C vary by insensible degrees in the
equation of the outer surface. Farther, let the thickness of
the uppermost stratum be denoted by the line %, drawn per-
pendicular to the outer surface from a point of which the
co-ordinates are x,y, % ; and let # — &2, y—2y, x— 4%, be
the co-ordinates of the other extremity of # in the under sur-
face of the stratum. The equation of this surface will be
found by substituting # —d@, y — 8y, z — 3%, in place of
2,9, %, in the function ¢, and by changing C into C—dC;
it will therefore be,

«p——%é‘m—-%é‘y——%é‘z: C—4C:
and by subtracting this from the equation of the outer sur-
face, we get
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de d¢ —_—
Again ; if we put,
— dp\s 1 [d0\s | [do\a.
S =
then, because the line % is perpendicular to the outer surface,
it follows, from the known properties of curve surfaces, that

the cosines of the angles which £ makes with the co-ordi-
.nates, are respectively equal to,

1 _de 1 do t do
dex xdy p>< z "
and hence,
-k de _k do, ___/c do
3w_7*(1z’ay~7xdy’3z 7 X

and by substituting these values in the preceding formula,
we obtain, '

e
Now p is the resultant of the accelerating forces at the sur-
face ¢ and the line k, or the thickness, is proportional to the
quantity of matter in the stratum at the same point ; where-
fore & x p is the pressure ; and the formula,

kxp=24C,
shows that the uppermost stratum presses upon the fluid
below it equally at all points.

As the attraction of the whole fluid mass is one of the
component forces of the gravitation p, the attraction of the
stratum must enter as a part of the same force. But it is
evidently only an infinitely small part of it; and conse-
quently produces only an infinitely small part of the pressure
pxk We may therefore consider the gravitation at the
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outer surface, and the pressure of the uppermost stratum
upon the fluid below it, as both independent of the attractive
force of the matter of the stratum. But the attraction of the
same matter upon all the particles within the stratum is a
force of the same order with the pressure p x k, and com-
parable with it, and which must not be neglected. Thus it
appears, that the uppermost stratum acts upon the fluid below
it both by pressure and by attraction ; and, as all the level
strata are derived from one another by the same law, it
follows, that every stratum in the interior likewise acts upon
the fluid below it both by pressure and by attraction.

Now it has already been shown, that the pressure of the
uppermost stratum is the same over all the surface of the
fluid below it ; and the same thing, it is manifest, is equally
true of any level stratum. Wherefore, since the strata press
equably upon one another, any fluid body in the interior,
bounded by a level surface, will be in equilibrio with respect
to the pressure it sustains from all the superincumbent strata.
But, according to the second condition in the hypothesis of
the proposition, the same body will also be in equilibrio with
respect to the attraction of all the exterior strata. Thus,
every interior fluid body bounded. by a level surface, is in
equilibrio with respect to all the forces which the exterior
matter exerts upon it. And, as this is true independently
of the dimensions of the interior body, we may suppose that
it is ultimately reduced to a quantity infinitely small, which
exerts no force, and is in equilibrio by the external forces
acting upon it. Then the whole fluid mass will be resolved
into level strata, that are in equilibrio with respect both to
the pressures and to the attractive forces, which they exert

MDCCCXXIV. R
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upon one another. We are therefore to conclude, that the
two conditions of the proposition are sufficient to ensure the
equilibrium of the fluid mass, and that both are necessary to
produce the effect.

5. Having established the physical properties of a homo-
geneous fluid mass in equilibrio, the investigation of its figure,
which is now brought within the power of analysis, is not
attended with much difficulty.

If a homogeneous body of fluid revolve about an axis,and
be in equilibrio by the centrifugal force and the attraction of
its particles, the axis of rotation will pass through the centre’
of gravity. This point is to be supposed at rest ; since it is
not the effect of any external forces that we have to consider,
but merely the mutual action of the particles upon one
another. If one of the planes of the co-ordinates pass through
the centre of gravity at right angles to the axis of rotation,
the other two will intersect one another in the same axis. Let
a,b, ¢, denote the co-ordinates of an attracted point ( which
must be considered as some small particle of the fluid con-
taining a given quantity of matter) placed any where in the
mass, a being parallel to the axis of rotation; and put

r==va’ 4 b4 ¢*. Suppose also that V () denotes the sum
of all the molecules of the body divided by their respective
d.V(r) d.V(r) d.V(r),
da ° " db ’ " de
will be the accumulated attractive forces exerted upon the
attracted point by the whole mass, in the directions of a, b, c,
and tending to increase these lines. Again; let » be the
centrifugal force at the distance from the axis of rotation

equal to unit; then, the distance of the attracted point from'
the same axis being equal to V& 4-¢*, the centrifugal force

distances from the attracted point : then
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urging it from the axis, will be » x vb* 4 ¢*; and the effect
of the same force to lengthen b and ¢, will be equal to

x‘/b+6x Vi and o x VO'4-c* x 7=

and w c. Hence, the forces acting upon the attracted point,

and tending to increase a, b, ¢, are respectively,
d.V(r)

da ?

d. V(r)

,OI‘tOwb

+ .0,
—l—wc‘

Now, the resultant of these forces must be perpendicular to
the level surface of which a, b, ¢ are the co-ordinates ; which
condition is expressed by this differential equation, viz.

LV gq 4 LT gp 4 LYO gy (bdb4cde) =o:
and the integral of this, viz.

V()4 =04 ¢)=C
is the general equation of all the level surfaces. Let p de-
note the cosine of the angle which the line » makes with the
axis of rotation ; and the foregoing equation will become,
V(N +=.7(1—p)=C.
And if we put R for the radius of the outer surface of the
fluid body, we shall have, for the equation of that surface,
V(R)-}-R‘x%(l—-‘u’)::c, ... (A)

which is one condition of the equilibrium of the fluid mass.

The equation just found is an essential condition of the
equilibrium, although it is not the only one. As it merely
expresses that the resultant of all the accelerating forces is
perpendicular to the fluid’s surface, it is not confined to a
homogeneous body, nor to one entirely fluid, but is true in

d. V(r)
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every case when a fluid in equilibrio covers, either entirely or
partially, the surface of any body, however variable in struc-
ture or density. Now, from the equation, we get,

V(R) , w \
N S
R*™ C ’
. . V (R) :
and, as it has been proved in §. 1, that —’ is always a func-

tion of three rectangular co-ordinates of a point in the sur-
face of a sphere, it follows that RIT’ and consequently R, must
be like functions. This inference, being founded on consi-
derations of the most general nature, cannot but include
every case of a fluid in equilibrio, placed upon the surface of
a revolving body.

Again, suppose that R, is the radius of any level surface
which contains the attracted point within it; and let V, (7)
denote the sum of all the molecules of the fluid within the
level surface, divided by their respective distances from the
attracted point: then,

V(r)—V,(r)
will be the sum of the molecules in the stratum of fluid con-
tained between the outer surface and the level surface, di-
vided by their respective distances from the attracted point;
and the attractive forces of the stratum upon the attracted
point in the directions of a, b, ¢, will be respectively,
d. { V(r) =V, (") } |
da ?
. §vO—v, i}
db >
d. {V(r) -V, (r)}
de ’
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Now, in the case of a homogeneous mass of fluid in equi-
librio, these forces must be evanescent; and that too, for
every point within the stratum, which requires that .

V(r)—V,(r),
shall be a constant quantity independent of a, b,c. And this
is the remaining condition necessary to the equilibrium.

Now, if we put, '

dr Rl3d[4,ldfm"
= 1 f ——
Q f ,«3;/1 V).z__ 27 R/'y + R'%
ler’f..—i; R'¥du ds' )
r vV r*—27rRy + R* >

V(r)=Q+Kr*
V() =Q,+ K :*
consequently, '

V@r)— V,()=Q—Q, 4 (K—K).
A very little attention will show that Q and Q,, contain no
terms multiplied by r*.  For if we expand Q into a series of
the ascending powers of 7, the term containing 72, will be
| r*x ij(” du dw’,
which, by the nature of the function C®, is equal to zero.
Wherefore the foregoing expression cannot be independent
of a, b, c, unless
K—K,=0; and K=K,

But it has already been shown that the equality of K to K,
requires that the radii R’ and R’,, which make the same angles
with the axes of the co-ordinates, and consequently are in the
same straight line, be constantly in the same proportion to
one another :¥ and hence we obtain this property of a homo_

we shall get,

* Section 3.
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geneous fluid mass in equilibrio, namely, that all the level
surfaces are similar to the outer one.

Again, since R and R/, are always in the same proportion
to one another, Q — Q, will be independent of 4, b, ¢, if we
make 7 disappear in Q. Now, by expanding the expression
of Q, and equating the co-efficients of the several powers of
r to zero, we get,

Q=//R*dp'd=
o=//R.CMdu'd=z'

o=y S c®

o=z ff Sl c! d,u’dw

d,u,'d'w

and generally,
0 ——ff C d[/. d='

R,i-—-Z

In the first place, all these equations are satisfied if we suppose
R’ constant ; that is, if the figure of the fluid be a sphere. But
the supposition of a sphere is inconsistent with the equation
(A), unless » be evanescent. Wherefore, a homogeneous fluid
body of a spherical figure cannot be in equilibrio by the
attraction of its particles, unless it have no rotatory motion.

Again, it follows from what has been shown, that R’ is a
function of u', V1 — w”. Sin =, V1— 1* . Cos @'; ' being
the cosine of an arc ¢ reckoned from the pole of a great cir-
‘cle on the sphere, and =’ the angle between §’ and a given
great circle passing through the same pole. Now if we sup-
pose that R’ is an even function, or that it contains only the

squares and the combinations of the squares of p/,, Vi— ™.
Sin @', V' 1—u”. Cos @’ ; the values of R/, which are always
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positive, will be the same in quantity, at points diametrically
opposite on the sphere, at which points ', Sin. =’ and Cos. =,
are different only in their signs. And because,

0% '-_':‘1,;{.;,'+1/1—[,¢,2 . ‘/1—-—;.(," Cos. ('w--za"),
it is obvious that ¢ will likewise have the same value and dif-
ferent signs at any two points diametrically opposite on the
sphere ; and the same property will belong to every func-
tion of ¢ that contains only the odd powers. Now we have

R.CYdy'da'=—R.CYd¢Sin ¢ dv';
and, as ¢ increases from o to#, and =’ from o to 2w, it is ob-
vious that the fluxions will be the same in quantity, but will
have different signs, at any two points diametrically opposite
on the sphere; because the sign of C®, which is an odd func-
tion of ¢, alone changes. Wherefore the integral will decrease
just as much in one hemisphere as it increases in the other;
and being extended to the whole sphere, it will be equal to
zero. In the same manner it is proved that

f Wi ae
- =0,

N R‘
whenever 7 is an odd number. Thus all the equations we
are considering, in which 7 is an odd number, are satisfied by
the supposition that R’ is an even function of y/,, Vi- .
Sin =’, V1—-,w" . Cos ='.

It remains to consider the cases when 7 is an even number,

viz.
(4), ,
ffc dwde
f NORS
——gr—— =0

-+ &ec.
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For this purpose the following theorem is premised, viz..

Theorem. If m, m', m" denote any positive integer num-
bers, such that m 4 m' < m" is less than 7; then
S e (VT Sin.w'y". (V1= Cos. o'y . COdu! du'=o,
the integral being extended from p'= 1 to p'=—1, and
from z'=0 to =12 7.

As expressions of this kind have been very amply discussed,
and as the theorem follows very readily from the properties
generally known, I shall not stop to give the demonstration.

It follows from the theorem that the equation,

CWdu do' __
— g =0,

cannot be true, if - contain any even power of the quantities

Rlz
¢, V1=, Sin. o', ¥ 1— u”* . Cos. w’, above the square; or

if it contain any product of two or more of the squares of the
same quantities. Wherefore the most general value of g
consistent with the above equation, is

R'z“" Ap 4 B(1—p'?) Sin? o' 4 C(1—p”) Cos*w'.
It may be observed, that this expression would not be more
general by adding an absolute quantity, as D : for, since

["fn+ ( 1 Mﬂ) Sin.z w1+ ( 1 —'F'I!) COS.’ o e 1’
such a quantity would blend itself with the other terms. But

the same value of = Will likewise satisfy all the equations,

’
jfc dy/ dw =0,
2——2

in which Z is an even number. For, because

P}

R,z——z ( AP",."I" B ( 1— /Q) Sin.* =’ 4 C ( 1 — /2) Cos.? w')—‘__,



of a homogeneous fluid mass that revolves upon an axis. 129

it follows that the expansion of —:—-; will produce no quanti-
—

ties in the integral except such as are evanescent by the
theorem.
The most general value of =, consistent with one of the

‘conditions of the equilibrium, has now been found. If we

write — k,, k,,, k,,,, for A, B, C, we shall get,
1 y. (1 = u?) Sin.? o’ (1 = pn*) Cos.2w’
R,q_ = kg + ) + 253 ’

an equation whiclt belongs to an ellipsoid of which &, ¥, #”,
are the three semi-axes. It is therefore proved that a homo-
geneous fluid mass cannot be in equilibrio by the attraction
of its particles, and a centrifugal force of rotation, unless its
figure be included in the ellipsoids. But it is still to be shown
that the same figure is consistent with the other condition of
the equilibrium. For the sake of abridging, put

S= p”-{-ki,i (1 = p*)Sint "4 7‘";’; (1 —w'*) Cos.*a'y

2
then, R*=§; and R= .

The value of Q being reduced to the first term of its expan-
sion, we have,

Q=ffR*dwda'=F.[f

du da',

and hence,

VR)=Q+K.R=F.// ¥LZ | KR
Let this value be substituted in the equation (A), and we
shall obtain,

® 1

K+ =(1=p")

dy’ dn’
R'= 5

MDCCCXXIII, S
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~ And the solution of the problem is now reduced to show that
this formula is similar to the equation

R'=%. |
When this is done, the relation between the figure of the
fluid mass and the given rotatory velocity will be found by
making the two expressions of R and R’ coincide, so that
both shall belong to the same surface.

In the first place, the integral in the numerator of the value
of R? is a function of k, ¥, ¥'; and as any value may be as-
signed to C, the whole numerator may be regarded as an
arbitrary quantity. The denominator is therefore all that
remains to be considered. Now,

K=—2"4 [ Log. R x C()a’p, do';
and, since Log. R’ = Log. k — % Log. S, we shall get,
K=—2 4 L //— Log. Sx C? dw dv',

because,  Log. kxff C?dw do' =o.
. (2) 1 dh(1—o%)? 3 o
Again, C =7-1'~W“77“%3

and, y==pw + V1=’ - V1 —p'* . Cos. (v—1a');
or, if we write m, n, p, for u, 1/::,;’. Sin. =, 1,/1_:;} . Cos. m,
we shall obtain,
y=mp+4n¥V1—u".8in. o4 pV1—u". Cos.a’
and hence,

RK=—Z"4 2 ff— (Luw'— ) Log.S. dw da
_z_fj'__{_; —w'*) Sin, w—-—~}Longp,a’w
+Z ff— { £ (1—p") Cos.’s' — ~ 1 Log.S.dw' da’
Fgmnff—u V1i—p Sin. o’ Log.S. dy/ d'

F gmpff—p V1i—u"™. Cos.w' Log.S.dy da'
+gnp/f— (1—=p'")Sin.a" Cos.a"Log.S.du'dw".
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But, because p'== Cos. ¢/, the three last integrals will become,

S/ Sin? ¢ Cos. ¢ Sin. o’ Log.S.d¢ds

J/Sin? § Cos. §' Cos. o' Log.S . d¢ do'

S/8in2¢ Sin, @’ Cos.w’ Log.S.d§ do':
and, attending to the expression of S, it will follow that, in
the two first integrals, if we suppose =’ to remain constant
and ¢’ to vary from o to 180°; the fluxions will be equal,
but will have different signs, at equal distances from o and
180°: wherefore the integrals, taken between the prescribed
limits, are evanescent. In the third integral, if we suppose
¢’ to remain constant and =’ to vary from o to g60°, the flux-
ions will be equal, but will have different signs, at equal dis=
tances from o and 18¢° in the first semicircle: and at equal
distances from 180° and g60° in the second semicircle:
wherefore the whole integral is evanescent. Rejecting there-
fore the three last terms of the value of K, and representing
the three remaining integrals by L, M, N, we shall get,

K+-§-(1——[.kz)=(-1-2-‘-—%77) 7

+(F-27+5) (1—p) Sin?s

+ (1—}_%# +-—;i) (1—p’) Cos.’ m.
‘This is the denominator in the formula for R*, and it is en-
tirely similar to the expression of S, Wherefore the two
values of R* and R'* are alike in point of form ; and the figure
of the fluid mass that corresponds to the given rotatory
velocity will be determined by making them coincide. |
We are now to conclude that a homogeneous fluid mass
cannot be in equilibrio by the attraction of its particles and
a centrifugal force of rotation, unless it have the figure of an
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ellipsoid ; and farther, that an ellipsoid may be found that
will fulfil all the conditions of the equilibrium, unless there
be some cases in which the necessary relations between the
figure and the given velocity of rotation, lead to equations
that cannot be solved. ,

6. In order to apply the foregoing solution, it becomes ne-
cessary to compute the integrals L, M, N ; or, in other words,
to find the attractive forces of an ellipsoid upon a point in
the surface. If we extend the problem generally to a point
within or without the figure, it is attended with some diffi-
culty ; and it is usual to deduce the latter case from the
former, which is more easily solved. There is however a
great analogy between the two cases ; or rather the distinc-
tion between them may be dispensed with; since the suppo-
sition of a point within the figure is equivalent to that of a
point in-the surface, which is the extreme case of a point
without the figure. In this view the problem admits of a
general solution deducible, by a short analysis, from the
transformations used in this Paper.

Suppose that £, k’, k", represent the semi-axes of an ellip-
soid ; and let z,y, %, respectively parallel to the axes, denote
the three co-ordinates of a point in the surface of the figure.
Farther let a, b, ¢, be the co-ordinates of an attracted point
without the figure ; and conceive another ellipsoid, the sur-
face of which passes through the attracted point, and which
has its principal sections in the same planes with the principal
sections of the given ellipsoid, and also the differences of the
‘squares of its semi-axes k&, &', k¥, equal to the differences of
the squares of &, ¥, &’ ; that is, i%—i'=;"—F, and A"*—h*
==k'"—}2. The equations of the two curve surfaces will thus
be,
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2 yl z!. —
ptrEt+m=1
a* c*
rtrtm=1
B B = 2 kz A AL h’: k'” —
Again, as in the former part of this Paper, let

z=Ry ' a=rp

y=RV1— " Sin. =, b=rv1— i Sin.w

z._Rt/l--H,”.Cos.w.’, c=rv1—p*Cos. = ;

then R and r are respectively radii of the two ellipsoids.

Farther, assume

—Z—x:-,’f Rp':“-R'p'
Ay =2 RVI— Sin.a’=R'v1—p"Sin. ¢

_”_'lz=7'z-ﬂR1/1 p” Cos. a'=R'V1— p" 2" Cos. ¢

77b"‘ rV1— @ Sin. o =1'4/1— " Sin. ¢

=7 ,,7‘1/1—-[4 Cos. w—r"/l—p Cos. q.

From these formulae we get

R*=12"+ )" + 2
T=att ) 2

and hence,

R —R= {5 4 & 4 2} (P k) =I—

In like manner, it is shown that
P e b
Wherefore,
R'4-r*=R" 41"

133
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And again,
arbydcz=Rry=R'r"9y;

9 = p,{,c'—l-‘ Vl-—-p.z. V1 --p.'z Cos. (za—za")

y=pp + Vi—p.v/1—p" Cos. (¢—¢').
“Wherefore,

R—-—ery—l-r’—-R’ o R'+ o 4= 1"

Farther, from the assumed equations we readily derive these
values, viz.

"
Tan.m_..zr. 7 - . Tan. q',
[l:l fraca ] p, . k .M .
\/I—"'[* \/l /z. T M’

M=V} Sin* ¢ + e Cos q"
R‘/l I‘— R,‘/l——P /t’h" ¢
And, if we now take the fluxions of the first and second of

these formula ; observing, in the second operation, to make
¢', and consequently M, constant ; we shall get,

d — d()' k’k" lz Y1
dM, dpl kA B

b

(—wt a—pi M
: /2 3 ]
Ra(l_“' )2 _._...Rla(1 Pl )2. hlahus .
And by combining these formulee, we obtain,
P RER
Rldup de"= 55~ . Rdp dy.
But, in § g it has been shown, that

V(r)
\/R"-—-Zery-{-'l.

and hence, by substltutlon

PRACANS
— 7‘2 3 LR R \/‘/ R’3 dp' dg
dr }l/l ]l” RIZ_ZRITI ‘yl+r/z.
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Now, in the equation of the ellipsoid of which &, ¥, ¥ are

3 1 7 e J
the axes, if we substitute —T’L, R Vl—hg”sln ¢ R V1 2 Cos. g

for the equivalent quantities, —, -%;, -f;; we shall obtain,

(1—p®) Sin2 ¢’ (1—p*) Cos.2 ¢’
R:z = IL" + e + Pz ¢

And, by a like procedure in the other ellipsoid, we obtain,
","?‘-" '}]:—:."l" (l—p’) Sm q + (1 == p*) Cos.> ¢ .

112

Thus R’ is a radius of the ellipsoid that passes through the
attracted point, and 7' a radius of the given ellipsoid which
is entirely within the first figure. The last integral may
therefore be developed in a series of the ascending powers of
7': and then, applying the same reasoning as in the former
case of the developement of Q,* it will be found that all the

terms are evanescent, except the first. Thus the general term

of the expansion is,
Oapay
R,z 2 :

and, when 7 is an odd number, this integral is equal to zero ;
because the increment at any point on the surface of the sphere,
is just equal to the decrement at the point 'diametrically
opposite: and, when 7 is an even number, it is evanescent ;
because

— contains no terms except such as are evanescent
RI

in the integral, according to the theorem in § 5. Wherefore,

the integral being reduced to the first term of its expansion,
we get,

V(?)
“‘< ) rP=ffR*dp'dq;
?' and ¢’ being taken between the same limits, as @' and ="

#* Section 5.
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Now, we have
’ A
Ri= . D ;
PP 45 (1=p?)Sint g 4 o5 (1= p'%) Cos ¢

or, which is the same thing,
R/Q }‘1. Illl hll'
}l“‘ (}L’ + czpra.) Sm 191 + ﬁ"' (h‘l + C'“p"‘) COS 2 / b

K= h"*—h=c",

wherefore
s PR dp dy
JIR*dp'dq “./]. P e p)Sincg § b (b + ¢ p7) Cos. g

This expression is now integrable with regard to ¢': and we

get, between the limits ¢’ = 0 and ¢'= 2 =,

hdyp'

JfRedp'dq¢=2m RK N [ e 2
The integral now found increases as much, while p' decreases
from 1 to o, as it does, while p’ decreases from o to —1:
wherefore the whole value will be the same, if we make p’
vary between the limits 1 and o; and then double the result :
thus,
hdp'

12 / o (B
ffR dp' dq _4W.hhh.fV(’L2+egpu) (hg_*_elezpl‘Z)
Finally put £ — > ; then we get,

’ 25 BV A —dz .
JIR*dp df =am. bk .fv(“eg)(“e,z),
the limits of x being, x =h and x = .
Wherefore, by substitution, we get,

( V(r)) / a
. 3 __ 7] —ar .
_Qﬂ-kk k . V(xg_l_ea) (.'I.'Q-'-C'Q)

Now, multlply by .--T-' and then integrate ; and, having

3

multiplied by 7* after the integration, we shall obtain,

—dax

V(r) = 27. kk’k".j‘v =+ &) (.1'2‘+e"3)
T ] -—d
—em RRE [ s
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In the expression under the sign of integration, 7 increases
from its value at the given attracted point till it becomes in-
finitely great ; the angles which it makes with the axes of the
co-ordinates remaining constantly the same. But if we sub-
stitute the values of a, b, ¢ in the equation,

;zz+},fz+ ];:2"“1
we shall get,

(1—-,uﬁ) Sin.? = (1= u?) Cos2am ,
=5+ 55 Fre T oy
and, by wrltmg x for 12,

(1 —u?)Sinlw (1.=u?) Cos2uw
1'2 = xl + 2® + € + 7t 4 e ’
in which expression, . and = remaining the same, x will vary

from £ to be infinite, while 7 increases from its value at the
given attracted point to be infinite. Wherefore, by substi-
tution, we get,

_ 7 L —dz
V(T‘) — Qﬂ'-kk k ‘l[‘(xg_*_eg)%(wg_l_elﬂ)%
—dx
T S
2 7 k r l'l" .Z‘Q(xg eg)% (x2+ CIQ)%

— o RFH (1 — 2 Sin.? JP
(1 —)8Sin "z <ﬁevw+m

— o7 Rk K. r*(1— 15 Cos.? f —4z -
. ( f") . w (Iz.z_’_ee)i‘ (1’-‘]—6'2)?

Let M denote the mass of the ellipsoid, then M = L YNIIE
wherefore, by substituting a, b, ¢, for the equivalent quanti-
ties, we finally get,

. 3]\/_[ —dx
V(r)= 2 L/.‘(rﬁ + eg)%(a:z + et
2

—_—a, 1 )

2 xéz(xe_l_esz)ﬂ (.Z'Q-{-e”')%
"'-'w 3M * -—3dw 1

2 o @+ ) (e
.—-62 3M --d.r

2 (:c9+e9) (x9+812)2

MDCCCXXIV. T
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To this expression we must join the equation of the surface
of the ellipsoid that passes through the attracted point, viz.
a? b? c?
—ﬁ+h9+e9+ 4 e? =1
by means of which &, the limit of x in the several integrals,
is to be determined. When the attracted point is in the
surface of the given ellipsoid, it is plain that A=/ ; and the
limit of x is, therefore, one of the semi-axes.

Thus an expression of V(r) has been found, that is ge-
neral for all positions of the attracted point ; nothing more
being requisite than to determine the limit of z in every par-
ticular case. The several integrals are closely connected
with one another ; they are in forms well known to geo-
meters, and susceptible of many transformations ; but, in a
general solution, it seems most simple to leave the expression
as it is above exhibited.

But although a general expression of V(7) has been found,
yet it does not immediately make known the attractive forces
acting upon a point. These forces, estimated in directions
parallel to the co-ordinates, are represented by the partial
fluxions of V(r) relatively to the co-ordinates ; but, in per-
forming the operations, it must be observed that z is a function
of r, and consequently of the co-ordinates. Thus the attrac-

tions of the ellipsoid, respectively parallel to a, b, ¢, are equal
to,

_EVm d.V(r) de

da —  dxz  da

4.V d.V(r) dua

: as = dr " db

d.V(r) d.V(r) duz

T dc¢ T Tda dc’

But, according to the foregoing value of V (7),

d.V(T) . %M . { _‘13 %3 o? )
dz -—\/(w"+e‘)(x“+e"l """1+ wa+x9+ez+xg+c,g}.,
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and as this quantity is to be valued at the limit, or when
d.v(r)

x == h, we have
do

== 0. Wherefore the expressions of

the attractive forces are reduced to, w— d'd‘;(r) y — d',\; b(r)
bl
d.V(r)

——— ; that is, to the partial fluxions of V(r), supposing

that x is independent of the co-ordinates, a, b, c.
The oblate ellipsoid of revolution, corresponds to the sup-
position, ¢*==¢"; and, in this case, we get,
3 —-d "—dy j —dz
V(T)——-:; 1.2_*_ T 1e ‘ M 22 (2% F €°) '
5 o —_dr
- (b +C) M /‘(wﬁ+e‘2)2

the equation for ﬁndmg h, the limit of z, bemg,

B
;ch + e + e =1.
And, when the attracted point is in the surface of the ob-
late spheroid of revolution, % is equal to £; and, if we put

7\_—k-,vveget o .
3M  Arc. Tan. a 2 3M A— Arc. Tan.a 3 re. lan, A= =——
V(=5 25t a5 - ) i SR LS

7. It may not be improper to apply the foregoing solution
to find the relation between the figure and the velocity of

rotation in the case of an oblate ellipsoid of revolution. As '
it has been proved that the supposed figure _Will satisfy one
of the conditions of equilibrium,* nothing more is requisite
than to employ the other condition, namely, that contained
in the equation (A), to determine the relation sought.

Let % be the semi-axis of revolution, and V# & ¢*, the
radius of the equator; if 4, b, ¢ be three rectangular co-ordi-
nates of a point in the surface, a being parallel to %, the equa-
tion of the figure will be,

* Section g.
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R
Put a’=R"p’; b'+=R° (1 — 1) ; €=k xa";
then, by substitution, we shall get,
R(14+2u)=F(142).
Again, from the formula (A), we get
V(R)4R. —}(1-—-—@2) =C,
» being the centrifugal force at the distance 1 from the axis
of rotation. This equation must be made identical with the
former one, and for this purpose we must substitute in it the
value of V (R') reduced to a proper form. Now, M being the
mass of the spheroid, we have

M=%’k(k2+e")=‘f3l'/e3(1 -+ %) ;

and for the sake of abridging, if we put,

A — Arc. Tan. a
A=—F—
Arc. Tan. A-——--—-—-—- '
B= 1+,
2 A3

and likewise attend to the values of o* and & 4 ¢, we shall
get by the formula in § 6,

VR)y=emk. CEDLCTN e o gl (1 42)B4-(1 420 (A —B) . '} :
and hence, by substitution, the equation we are considering,
when brought to the same form of expression as the first
one, will become,

(@ +?~’)(A—B)+‘-i- B (1 Ay Arc.Tarn.A_ﬁ
Rg.{l-l- 4""4;,'}: A " 27,
(1+2)B—-—

%) B e e
(14 2*)B v

By comparing the two equations, it will appear that the only
condition necessary to make them identical, is this, viz.
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(142 (A=B) + =

2
=%

(142 B—-=

for the terms on the right<hand sides will be made to coin--
cide by giving a proper value to the arbitrary quantity C.
Hence, '

ATQ:':= (14 »2)B—A.
Now put,

u’ ——y, .
.3.,‘” - q 2
then, restoring the values of A and-B, we shall obtain;

2 =X 1 ; Arc. Tan. A\
9 "'_3"_(3"!"#)'(1" A

From this formula it appears that ¢ =0, both when a is equal
to zero and when it is infinitely great. There is therefore
no rotatory motion in either of the extreme cases, when the
oblateness is nothing, and when it is infinite ; or when the
fluid mass is a sphere, and when it is a circular sheet spread
out in the plane of the equator. In order to discover whether
q is evanescent in any other circumstances, put Tan. ¢ = a;

2z v 1z (pCos.¢) .
then 5173 [mm—3) B

or, in a series,
‘ 1.2.4.6
§5.7¢9.11
. 1.2.4.6.8
§.7.9. 11,13
—&ec.
Now this series being evanescent both when Sin. ¢ ==, and
when Sin. ¢ =1, it follows that, for every other value of
Sin. ¢, ¢ will be positive ; and hence it will first increase from

zero to a maximum, and then decrease to the first limit. If

g=2Sin‘e+ =2Sin‘p— Sin.* ¢

Sin.* ¢
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we seek the value of a that will make ¢ a maximum, we shall
find this equation, viz.

—_ 2 9t 7,
Arec. Tan.x_x+?\2.-9—_l-_—;\-;-,

from which a comes out equal to 2'5292. And hence V1 + »7,
which is the proportion of the equatorial diameter to the
polar axis, is equal to 2.7197.

From all this it follows, that if a homogeneous mass of fluid
in equilibrio, at rest, and consequently of a spherical figure,
begin to revolve about a diameter, it will become more and
more oblate as the velocity of rotation increases, till the
equatorial diameter have to the polar axis the proportion of
2°7197 to 1: arrived at this point the rotatory velocity must
decrease, in order that the fluid in equilibrio continue to have
the figure of an ellipsoid of revolution with increasing ob-
lateness ; in so much that while the oblateness tends to be
infinite, and the fluid to become a circular sheet in the plane
of the equator, the velocity of rotation continually approaches
to zero. 4 _

As the oblateness increases without ceasing, there is but
one rotatory velocity with which a spheroid of a given figure
will be in equilibrio.

But when a fluid mass is to revolve in a given time, and
the figure that will maintain the equilibrium is sought, there
are two solutions, if the proposed rotation be within the maxi-
mum, and one only, when it reaches that limit.

When the rotatory velocity is greater than the maximum,
‘the equilibrium cannot take place: for, on the one hand, the
proposed rotation is inconsistent with the figure of an ellip-
soid ; and, on the other, it has been proved, that a homoge-
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neous fluid cannot be in equilibrio unless it have that figure.
In this case, therefore, the fluid would first extend itself, and
flatten to a certain degree with a decreasing velocity of rota-
tion, and then oscillate back with an increasing rotatory mo-
tion. But the tenacity of the particles would gradually dimi-
nish, and finally destroy, the oscillations of the fluid ; which
would therefore ultimately settle in one of the figures of equi-
librium; that is,in an elliptical spheroid of revolution having
the equatorial diameter more than 2:7179 times the axis of
revolution. ' o ' ' - ,

When the oblate figures are little different from spheres,
as in the case of the planets, a, which is equal to the excen-
tricity of the meridian divided by half the polar ax.is,_is“so‘
small that we may consider »* as equal to Sin.* ¢, and may
reject all the powers of these two quantities. The series for
q will thus be reduced to its first term, viz.

_"--'-'--:—Sin.2 ¢=—:—A’. '
But the polar axis is to the equatorial diameter as 1 to V14 a7,
or as 1 to 1 -4 a": wherefore the same proportion is equal

to that of 1 to 1 +—i—q.
Again, we haye =57
now, —‘;— = being the mass of a sphere of which the density and

the radius are each equal to unit, it will represent the gravi-
tation at the surface; and, if we suppose the same sphere to
revolve with the given rotatory velocity, w will be the cen-
trifugal force at the equator. Wherefore ¢ is the proportion
of the centrifugal force at the equator to the gravity ; a pro-
portion which remains the same in all spheres that have the
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same density and the same velocity of rotation, because both
the quantities increase as the radius of the sphere. Hence, in
a planet of small oblateness, the value of ¢ to the degree of
approximation mentioned, is equal to the proportion of the
centrifugal force to the gravitation at the equator; and the
proportion of 1 to 1 4 £ ¢ is equal to that of the polar axis
to the equatorial diameter.

8. In the determination of the equilibrium of a homogene-
ous fluid mass investigated in this Paper, two conditions are
found necessary when the particles are endowed with attrac-
tive powers ; whereas, in the usual solution of the problem
one only is deemed sufficient, namely, that contained in equa-
tion (A), which expresses that the resultant of the accele-
rating forces acting upon the particles in the outer surface
shall be every where:perpendicular to that surface. It is
extremely remarkable that, of the two conditions, the one
which is usually omitted, alone and without reference to the
other, ascertains the kind of the figures of equilibrium.

M’Laurin first proved synthetically that the ellipsoid,
whatever be the degree of oblateness, fulfils all the conditions
requisite for maintaining the equilibrium of a homogeneous
fluid mass that revolves about an axis. If therefore the equa-
tion (A) were alone sufficient for the equilibrium, the ellip-
soid must be deducible from it, not in particular suppositions
and approximately, but generally, and by an accurate process
of reasoning. But this has not been accomplished, nor even
attempted, by any geometer. No application has hitherto
been made of the hydrostatical theory, except in the case of
spheroids little different from spheres.

If a homogeneous fluid of a spherical form at rest, and
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consequently in equilibrio, begin to revolve about a diameter
with a rotatory velocity causing a centrifugal force at the
equator, very small in proportion to the gravitation ; the
sphere will acquire a 'small degree of oblateness at the poles,
and the new surface of equilibrium must come under the
equation (A). Now, from these considerations alone, with-
out any reference to the other condition of equilibrium, it has
been proved by LEGENDRE and LarLacE, that the particles of
the fluid will arrange themselves very nearly in an ellipsoid
of revolution, the deviation being proportional to the square
and higher powers of the oblateness. But, as the coincidence
of the true figure of equilibrium with the ellipsoid is not
exact, the result seems to be inconsistent with what M’Lavrin
has so ably and elegantly demonstrated to be true. This
argument will acquire greater force, and will even become
conclusive, against the theory which makes the equation (A)
the only condition of the equilibrium, if we consider the ob-
lateness as a finite quantity, and push the approximation so
as to take in the square and higher powers :* for, by this
procedure, we obtain a series of figures in which the ellipsoid
is not included. -

There is a great analogy between the modern theory of
spheroids little different from spheres, and the assumption of
NewToN, who tacitly supposed that the fluid sphere,in the
nascent change of its form, will become, either exactly or
very nearly, an elliptical spheroid, oblate at the poles. Both
views of the subject leave us in ignorance of the exact form
of the surface of equilibrium,”although, in the supposed cir-
cumstances, it is pfoVé’d in the one, and assumed in the other,
that it is nearly an ellipsoid. '

- * Mec. Celeste, Vol. ii, p. 105, No. 37.
MDCCCXXIV. v U
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The figures of the earth and of the planets being entirely
-deduced from the properties of spheroids little different from
spheres, it may not be improper to conclude this Paper with
a short exposition of a theory that occupies so conspicuous a
place in the celestial mechanics, and which is so intimately
connected with the subject we have been discussing..
For this purpose resume the expansion of V(r) already
given in § 3, viz.
V(r)=/[fRedw do' + r[fR.CM dp do'

+7. {—2 4+ f/Log.R. c®apdp}

2 [
=3l

i D g g
- i-izfjc R:Ii!:ja
&ec.

The spheroid being' nearly a sphere, we may suppose
R=a.(14«.)'); «being a small coefficient of which the
scjuare and other powers are to be neglected ; and y' a func-
tion of the angles that determine the position of R. 'The
expansion supposes that the attracted point is within the
spheroid ; but it will apply when the same point is in the
surface, in which case, r=R=a (1 4 «.y). Now, let the
values of R and R’ be substituted, and we shall obtain,

V(R) =[fi:(1 -+ Qay')dy'd?'——%tag (142ay)
+aa.ffy.CNdwda
taa. ffy.CPapda'
Faa.ffy. ct® dy dw"
-+ &c.
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‘This expression is to be substituted in the equation (A): and
it is to be observed that ﬂ ? dp' do' =2 wa*; and that o is

of the same order with «. Hence we get,
C=Yo—ay+tde. [fyduda
+ aa.ffy. C(l)dpfd'zo"

@ Jo Sy CPdpde 4 5 (1— @)}

+ . ffy. c® du' da

+ &ec.
This is the approximate equation of the surface, when the
equation (A) is alone taken into account; and it is to be
proved that this equation cannot subsist unless it belong to
an elliptical spheroid of revolution.

In the first place, the nature of the function y must depend

upon the integrals by which its value is expressed. But all

the integrals are independent of the angles that determine
the position of the attracted point in the surface, unless so far

as those angles enter into the expressions C('), c® , C(3>, &ec.
which are all functions of . Now ¢ is a function of u,

v/1— 2 Sin. @, ¥ 1— u?. Cos. = : and hence it follows, that
y and ¥ are functions of three rectangular co-ordinates of a
point in the surface of a sphere.

In the second place, every function of three rectangular
co-ordinates is susceptible of an arrangement, by which it
will be converted into a series of the same integrals contained
in the foregoing equation. Let

f=Vi—2ey-é:

then, as is well known, we shall have,
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47y [/( +25——-——>ydp.dzo‘,

provided we make ¢ = 1, after the integration. Now for ;f
substitute its developement,* and make ¢ =1 : then, L
gary=[fydudz
+ s/fy.Cduda
+5/fy.CPauda

+ (i 1)ffy. CVdw dw

4 &ec.
This expression is identical when y and y' are functions of
three rectangular co-ordinates. It is analytically true of
every function that can be algebraically transformed into an
expression of three rectangular co-ordinates; and thus it
may be said to comprehend every function of two variable
angles.

We have now obtained two expressions of y in the same
quantities. But it is easy to prove that the same function
can be so expressed only one way. The two values of y
must therefore be identical ; and all the terms that cannot be
made to coincide, must be evanescent. Hence we obtain

o=[fy.CPdpds
o=[[y". C(3)d|.k'dzo"

o=ffy.CYdp do
&ec.

* Section 2.
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from which it is easy to infer that the most general value of

-y" is thus expressed, viz.
pP=A.p"+B(1—p”®)Sin’z 4 C (1— p?) Cos.*a

It deserves to be remarked, that the equations just found

are the very same that result from the second condition of

equilibrium, when, for R, we substitute a (1 4 «.3"), and
neglect the powers of «.

Now, leaving out the evanescent terms, the two foregoing
expressions will become,

C:—..f’-fag--f'—fagy + . ffyduda
e faffy P dpde 2 (1))
sny=[ffyduded+5/[y. CPdy da"

and farther, if we exterminate the integral containing c®
from the first, we shall obtain,

@4+ ;Ce Jfydwda
- -{‘,;-“J’“"“;(l-—‘f'«z)}

4wy =/f[yduds + 5 [fy.CPauda.
The first of these equations proves that y is a function of
only, and that the spheroid sought is one of revolution. The

second is satisfied by putting,
y=J(1—)
y=f(1—p):
wherefore, by substituting these values, the first will become,
‘“'a (14 Laf)—a (&f af—-u——) (1-«»;,, ).
Hence we ﬁnally get,
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o

I

w

I
N

q
af
C ; @. (14 2q)
ey =af (1—p)=5q(1—)
a(14zy)=a {1+%q(1-—-pﬁ)}-

Such is the method of investigation for which we are in-
debted to LEGENDRE and LapLAcE in its fundamental prin-
ciples : for, when all the operations necessary for applying
it extensively and readily are fully explained, it becomes a
great branch of analysis. The result is no more than an
approximation, both on account of the quantities omitted,
and because no attention is paid to one of the conditions of
equilibrium. Considering the near approach of all the planets
to the spherical form, the method of calculation may be
deemed sufficiently accurate for determining the figure of
the fluids that cover their surfaces; but it is not the less
necessary to place the physical theory on a clear and sure
foundation. As the subject is usually treated, there is an
obscurity, and a want of evidence, arising from the incon-
sistency between the hydrostatical theory and what is proved
by M’LauriN, which is extremely embarrassing, but which
entirely disappears, when we take into account all the phy-
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I

sical conditions requisite to maintain the equilibrium of a
homogeneous fluid mass that revolves upon an axis.

J. IVORY.

November 2, 1823.



